Back to all skills

Excel Analysis

Analyze Excel spreadsheets, create pivot tables, generate charts, and perform data analysis. Use when analyzing Excel files, spreadsheets, tabular data, or .xlsx files.

Popular Data

Run this skill in the cloud

No local installation needed
All dependencies pre-installed
Secure isolated VM environment

Skill Documentation

# Excel Analysis

## Quick start

Read Excel files with pandas:

```python
import pandas as pd

# Read Excel file
df = pd.read_excel("data.xlsx", sheet_name="Sheet1")

# Display first few rows
print(df.head())

# Basic statistics
print(df.describe())
```

## Reading multiple sheets

Process all sheets in a workbook:

```python
import pandas as pd

# Read all sheets
excel_file = pd.ExcelFile("workbook.xlsx")

for sheet_name in excel_file.sheet_names:
    df = pd.read_excel(excel_file, sheet_name=sheet_name)
    print(f"\n{sheet_name}:")
    print(df.head())
```

## Data analysis

Perform common analysis tasks:

```python
import pandas as pd

df = pd.read_excel("sales.xlsx")

# Group by and aggregate
sales_by_region = df.groupby("region")["sales"].sum()
print(sales_by_region)

# Filter data
high_sales = df[df["sales"] > 10000]

# Calculate metrics
df["profit_margin"] = (df["revenue"] - df["cost"]) / df["revenue"]

# Sort by column
df_sorted = df.sort_values("sales", ascending=False)
```

## Creating Excel files

Write data to Excel with formatting:

```python
import pandas as pd

df = pd.DataFrame({
    "Product": ["A", "B", "C"],
    "Sales": [100, 200, 150],
    "Profit": [20, 40, 30]
})

# Write to Excel
writer = pd.ExcelWriter("output.xlsx", engine="openpyxl")
df.to_excel(writer, sheet_name="Sales", index=False)

# Get worksheet for formatting
worksheet = writer.sheets["Sales"]

# Auto-adjust column widths
for column in worksheet.columns:
    max_length = 0
    column_letter = column[0].column_letter
    for cell in column:
        if len(str(cell.value)) > max_length:
            max_length = len(str(cell.value))
    worksheet.column_dimensions[column_letter].width = max_length + 2

writer.close()
```

## Pivot tables

Create pivot tables programmatically:

```python
import pandas as pd

df = pd.read_excel("sales_data.xlsx")

# Create pivot table
pivot = pd.pivot_table(
    df,
    values="sales",
    index="region",
    columns="product",
    aggfunc="sum",
    fill_value=0
)

print(pivot)

# Save pivot table
pivot.to_excel("pivot_report.xlsx")
```

## Charts and visualization

Generate charts from Excel data:

```python
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_excel("data.xlsx")

# Create bar chart
df.plot(x="category", y="value", kind="bar")
plt.title("Sales by Category")
plt.xlabel("Category")
plt.ylabel("Sales")
plt.tight_layout()
plt.savefig("chart.png")

# Create pie chart
df.set_index("category")["value"].plot(kind="pie", autopct="%1.1f%%")
plt.title("Market Share")
plt.ylabel("")
plt.savefig("pie_chart.png")
```

## Data cleaning

Clean and prepare Excel data:

```python
import pandas as pd

df = pd.read_excel("messy_data.xlsx")

# Remove duplicates
df = df.drop_duplicates()

# Handle missing values
df = df.fillna(0)  # or df.dropna()

# Remove whitespace
df["name"] = df["name"].str.strip()

# Convert data types
df["date"] = pd.to_datetime(df["date"])
df["amount"] = pd.to_numeric(df["amount"], errors="coerce")

# Save cleaned data
df.to_excel("cleaned_data.xlsx", index=False)
```

## Merging and joining

Combine multiple Excel files:

```python
import pandas as pd

# Read multiple files
df1 = pd.read_excel("sales_q1.xlsx")
df2 = pd.read_excel("sales_q2.xlsx")

# Concatenate vertically
combined = pd.concat([df1, df2], ignore_index=True)

# Merge on common column
customers = pd.read_excel("customers.xlsx")
sales = pd.read_excel("sales.xlsx")

merged = pd.merge(sales, customers, on="customer_id", how="left")

merged.to_excel("merged_data.xlsx", index=False)
```

## Advanced formatting

Apply conditional formatting and styles:

```python
import pandas as pd
from openpyxl import load_workbook
from openpyxl.styles import PatternFill, Font

# Create Excel file
df = pd.DataFrame({
    "Product": ["A", "B", "C"],
    "Sales": [100, 200, 150]
})

df.to_excel("formatted.xlsx", index=False)

# Load workbook for formatting
wb = load_workbook("formatted.xlsx")
ws = wb.active

# Apply conditional formatting
red_fill = PatternFill(start_color="FF0000", end_color="FF0000", fill_type="solid")
green_fill = PatternFill(start_color="00FF00", end_color="00FF00", fill_type="solid")

for row in range(2, len(df) + 2):
    cell = ws[f"B{row}"]
    if cell.value < 150:
        cell.fill = red_fill
    else:
        cell.fill = green_fill

# Bold headers
for cell in ws[1]:
    cell.font = Font(bold=True)

wb.save("formatted.xlsx")
```

## Performance tips

- Use `read_excel` with `usecols` to read specific columns only
- Use `chunksize` for very large files
- Consider using `engine='openpyxl'` or `engine='xlrd'` based on file type
- Use `dtype` parameter to specify column types for faster reading

## Available packages

- **pandas** - Data analysis and manipulation (primary)
- **openpyxl** - Excel file creation and formatting
- **xlrd** - Reading older .xls files
- **xlsxwriter** - Advanced Excel writing capabilities
- **matplotlib** - Chart generation

Published by davila7

This skill works with Claude Code, Cursor, Windsurf, Gemini CLI, and other AI coding agents.

rebyte.ai - The only skill marketplace where you can run skills directly in the cloud

No downloads. No configuration. Just sign in and start using AI skills immediately.